СИГНАЛЬНЫЙ ПРОЦЕССОР В СИСТЕМЕ УПРАВЛЕНИЯ ПОВЫШАЮЩИМ КВАЗИРЕЗОНАНСНЫМ ПРЕОБРАЗОВАТЕЛЕМ

В.П.Войтенко, М.А.Хоменко

Черниговский государственный технологический университет Кафедра промышленной электроники, ул. Шевченко, 95, 14027, г. Чернигов, Украина Черниговский государственный технологический университет, Тел. (04622) 316-96, E-mail: vvp@inel.stu.cn.ua, mr.homax@gmail.com

Annotation – Space vectors in the quasi-resonant pulse converter switched at a zero current are defined. Advantages of the digital signal processor and high level programming conception in advanced control systems for quasi-resonant pulse converters are formulated and demonstrated.

Key words – digital signal processor, quasi-resonant pulse converter, advanced control.

ВВЕДЕНИЕ

Решение задач снижения энергопотребления, сформулированных в новом плане энергоэффективности, разработанном Европейской Комиссией, предполагает все более широкое внедрение систем энергетической электроники [1]. Совершенствование этих систем лежит в плоскостях повышения частоты преобразования электроэнергии, лучшей топологии, продвинутого управления и др. Для маломощных систем электропитания в данный контекст хорошо вписываются квазирезонансные импульсные преобразователи (КРИП), наиболее полно классифицированные в [2]. Развитие этого класса импульсных преобразователей энергии продолжается, подтверждением чему служит ряд свежих публикаций [3-5].

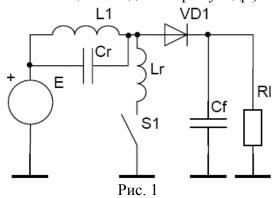
Перспективным следует считать использование КРИП в системах точного регулирования, поскольку достигаемые высокие частоты преобразования, помимо снижения габаритов устройства, позволяют также улучшить динамические характеристики системы за счет уменьшения постоянных времени фильтрующих цепей.

В этих системах КРИП может рассматриваться в качестве звена системы управления с соответствующими параметрами. Это в перспективе позволяет реализовать продвинутые алгоритмы регулирования, например [6].

В [7] предложен подход, позволивший наглядно представить элементы КРИП,

переключаемого при нулевом напряжении, в качестве звеньев системы в пространстве состояния, что стало фундаментом для построения оптимальных регуляторов в замкнутых системах автоматического управления. Вместе с тем, в известных работах отсутствует информация, касающаяся других перспективных импульсных преобразователей, в частности — повышающих КРИП.

Важной проблемой является также разработка прикладного программного обеспечения, которая все в большей степени становится трудоемкой задачей. Ее решение может быть существенно облегчено за счет использования систем высокоуровневого программирования.


Цель данной работы — определение переменных состояния и синтез системы управления высокого уровня для повышающего квазирезонансного преобразователя, переключаемого при нулевом токе (КРИП-ПНТ).

ОПРЕДЕЛЕНИЕ ВЕКТОРОВ СОСТОЯНИЯ В КРИП-ПНТ

Упрощенная функциональная схема исследуемого КРИП-ПНТ показана на Рис. 1.

Здесь опорными элементами контура, определяющими резонансный процесс, являются Cr и Lr, а ключ SI в двухполупериодной схеме реализуется на МОПтранзисторе, между стоком и истоком которого обратно включен защитный диод.

В [2] приведен упрощенный анализ понижающего КРИП-ПНТ, причем преобразователь представлен в виде генератора постоянного тока, питающего нагрузку, которая замещена источником постоянного напряжения. При построении точных систем питания и управления, в которых предъявляются высокие требования к динамическим характеристикам, а также электромагнитной совместимости и массо-габаритным показателям, требуются расчетные соотношения, учитывающие конечные значения номиналов компонентов схемы (накопительного дросселя *L1*, сглаживающего конденсатора *Cf* и др.).

Полный период частоты переключения в установившемся режиме можно разделить на четыре интервала, начиная с момента замыкания ключа S1. Поскольку на каждом из интервалов эквивалентная схема КРИП-ПНТ представляет собой линейную стационарную систему, она может быть описана совокупностью линейных дифференциальных уравнений первого порядка с постоянными коэффициентами, которую можно представить в следующей векторно-матричной форме [8]:

$$\frac{d\mathbf{v}(t)}{dt} = \mathbf{A}\mathbf{v}(t),\tag{1}$$

где A — матрица коэффициентов;

v(t) — вектор-столбец состояния системы увеличенной размерности. Для повышающего КРИП-ПНТ этот вектор представлен (2), причем:

 i_{Ll}, i_{Lr} — токи через индуктивности Ll и Lr, соответственно;

 u_{Cr} , u_{Cf} — напряжения на конденсаторах Cr и Cf.

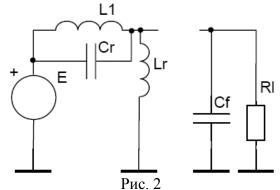
$$\mathbf{v} = \begin{bmatrix} E \\ i_{L1} \\ u_{Cr} \\ i_{Lr} \\ u_{Cf} \end{bmatrix} = \begin{bmatrix} E \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}. \tag{2}$$

Решения уравнений состояния (1) находятся в форме:

$$\mathbf{v}(t) = \mathbf{\Phi}(t)\mathbf{v}(0^+), \tag{3}$$

где $\Phi(t)$ – расширенная матрица перехода системы;

 $\mathbf{v}(\theta^+)$ – вектор начальных условий.


Вычисление $\Phi(t)$ можно произвести по следующему алгоритму:

$$\mathbf{\Phi}(t) = L^{-1} \left\{ \left[p\mathbf{I} - \mathbf{A} \right]^{-1} \right\}, \tag{4}$$

где I – единичная матрица.

Последовательно выполним анализ КРИП-ПНТ на каждом из четырех интервалов периода переключения с целью определения исходных данных для применения процедуры (1) - (4).

ПЕРВЫЙ ИНТЕРВАЛ (интервал заряда дросселя LI). Начинается в момент времени t_0 , совпадающий с замыканием силового ключа SI и протеканием через него положительной полуволны резонансного тока. Эквивалентная схема КРИП-ПНТ представлена на Рис. 2.

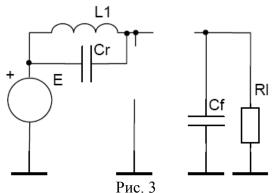
Из этой схемы установлена взаимосвязь между напряжениями и токами в КРИП на первом интервале:

$$u_{L1} = L1 \frac{di_{L1}}{dt} = u_{Cr};$$

$$i_{L1} + i_{Cr} = i_{L1} + Cr \frac{du_{Cr}}{dt} = i_{Lr};$$
 $u_{Cr} + u_{Lr} = u_{Cr} + Lr \frac{di_{Lr}}{dt} = E;$
 $u_{Cf} = -i_{Cf}Rl = -RlCf \frac{du_{Cf}}{dt},$

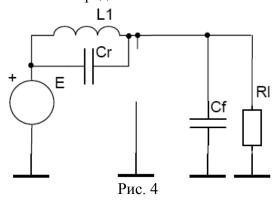
откуда следует:

$$\frac{d\mathbf{v}}{dt} = \begin{bmatrix} 0 \\ x_2/L1 \\ (-x_1 + x_3)/Cr \\ (E - x_2)/Lr \\ -x_4/(RlCf) \end{bmatrix}; \quad \mathbf{v}(t_0) = \begin{bmatrix} E \\ i_{L1}(t_0) \\ u_{Cr}(t_0) \\ 0 \\ u_{Cf}(t_0) \end{bmatrix}.$$
 (5) Мени t_3 , совпадающий с отпиранием диода $VD1$. Упрощенная эквивалентная схема $VD1$. Упрощенная эквивалентная схема $VD1$. Чиминастся в момент времени t_3 , совпадающий с отпиранием диода $VD1$. Упрощенная эквивалентная схема $VD1$. Чиминастся в момент времени t_3 , совпадающий с отпиранием диода $VD1$. Упрощенная эквивалентная схема $VD1$. Чиминастся в момент времени V 0. Пачинастся в момент времени V 1. Пачинастся в момент времени V 2. V 3. Пачинастся в момент времени V 3, совпадающий с отпиранием диода V 4.


ВТОРОЙ ИНТЕРВАЛ (интервал обратной полуволны тока дросселя Lr). Начинается в момент времени t_1 , совпадающий с началом пропускания тока защитным диодом силового ключа S1. Эквивалентная схема аналогична Рис. 2.

Для этого интервала векторы состояний и начальных условий определяются аналогично (5):

$$\frac{d\mathbf{v}}{dt} = \begin{bmatrix} 0 \\ x_2/L1 \\ (-x_1 + x_3)/Cr \\ (E - x_2)/Lr \\ -x_4/(RICf) \end{bmatrix}; \quad \mathbf{v}(t_1) = \begin{bmatrix} E \\ i_{L1}(t_1) \\ u_{Cr}(t_1) \\ 0 \\ u_{Cf}(t_1) \end{bmatrix}.$$
(6)


ТРЕТИЙ ИНТЕРВАЛ (интервал линейного заряда конденсатора контура *Cr* током дросселя L1). Начинается в момент времени t_2 , совпадающий с прекращением пропускания тока силовым ключом S1. Эквивалентная схема КРИП-ПНТ представлена на Рис. 3.

Для этого интервала векторы состояний и начальных условий определяются выражением (7).

$$\frac{d\mathbf{v}}{dt} = \begin{bmatrix} 0 \\ x_2/L1 \\ -x_1/Cr \\ 0 \\ -x_4/(RlCf) \end{bmatrix}; \quad \mathbf{v}(t_2) = \begin{bmatrix} E \\ i_{L1}(t_2) \\ u_{Cr}(t_2) \\ 0 \\ u_{Cf}(t_2) \end{bmatrix}. \tag{7}$$

ЧЕТВЕРТЫЙ ИНТЕРВАЛ (интервал подзаряда конденсатора фильтра Cf током дросселя L1). Начинается в момент времени t_3 , совпадающий с отпиранием диода

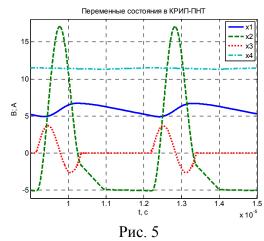
Для этого интервала векторы состояний и начальных условий определяются выражением (8):

$$\frac{d\mathbf{v}}{dt} = \begin{bmatrix} 0 \\ x_2/L1 \\ 0 \\ 0 \\ (x_1 - x_4/Rl)/Cf \end{bmatrix}; \quad \mathbf{v}(t_3) = \begin{bmatrix} E \\ i_{L1}(t_3) \\ u_{Cr}(t_3) \\ 0 \\ u_{Cl}(t_3) \end{bmatrix}. \tag{8}$$

Выражения (5)...(8) позволяют легко определить матрицы коэффициентов для каждого из интервалов, а далее вычислить переменные состояния с целью использования в управляющих алгоритмах. Следует также отметить, что при практической реализации системы управления средствами микропроцессорной техники определенные преимущества получат процессоры цифровой обработки сигналов, архитектурные особенности которых позволяют повысить эффективность реализации наблюдателей состояний.

СИНТЕЗ РЕГУЛЯТОРОВ И ВЫСОКОУРОВНЕВОЕ ПРОГРАММИРОВАНИЕ

Вследствие существенной нелинейности импульсных преобразователей, а также усложнения схемотехники традиционные теоретические подходы к их анализу и проектированию все в большей степени утрачивают свое значение, поскольку приводят к громоздким формульным выражениям, которые не находят практического применения. Разумной альтернативой является компьютерное моделирование, в частности — с использованием среды *MATLAB+Simulink*, а также таких расширений, как *powergui* и др.


В силу особенностей работы импульсных ключей, и, принимая во внимание их непосредственное взаимодействие с реальными объектами, целесообразно применение такого программного расширения Simulink, как Simscape, которое позволяет моделировать многодоменные физические системы, содержащие механические, гидравлические, пневматические, тепловые, электрические и электромагнитные компоненты, представляя физические компоненты или отношения прямым образом. Пакет расширения SimElectronics работает совместно с Simscape и открывает возможности физического моделирования электромеханических и электронных систем.

Программное обеспечение Sim Power Systems также, как и другие продукты семейства инструментов физического моделирования, взаимодействует с Simulink, что позволяет моделировать электрические и механические системы, а также системы управления. Библиотека Sim Power Systems специально предназначена для моделирования некоторых полупроводниковых приборов средствами Simulink. К сожалению, данные модели не позволяют проанализировать особенности поведения импульсного преобразователя с достаточной достоверностью. Чтобы не прибегать к использованию внешних программ низкоуровневого моделирования электронных компонентов (Cadence, например), можно использовать библиотеку Simscape/ Additional Components/ SPICE-Compatible Components.

На Рис. 5 приведены результаты моделирования КРИП (временные диаграммы

переменных состояния из предыдущего раздела), в котором использованы компоненты со следующими характеристиками:

E=7~B; $L1=100~{\rm M}$ к Γ н; $Cr=60~{\rm H}$ \Phi; $Lr=0,61~{\rm M}$ к Γ н; $Cf=100~{\rm M}$ к Φ ; S1~BUZ10; VD1-1N5822.

Актуальной элементной базой систем управления, в первую очередь, являются микроконтроллеры. Схемотехника в этом случае, как правило, стандартна и не представляет сложности. Разработка же прикладного программного обеспечения требует огромных затрат времени и узкой специализации разработчика. Эта специализация теряет смысл вследствие быстрой эволюции встраиваемых микроконтроллеров в направлении повышения производительности, объема резидентной памяти и номенклатуры встроенных периферийных устройств. Параллельно идет процесс развития интегрированных средств разработки программного обеспечения, расширения их номенклатуры для каждого из актуальных на рынке семейства микроконтроллеров. В итоге разработчик промышленной системы управления стоит перед необходимостью решения массы задач, предваряющих активную фазу проектирования. В частности, необходимо:

- 1) выбрать семейство микроконтроллеров из множества, представленных на рынке;
- 2) выбрать соответствующую среду разработки программного обеспечения;
- 3) выбрать конкретный микроконтроллер в семействе, потенциально способный

решить поставленную задачу;

- 4) изучить техническую документацию на выбранный микроконтроллер;
- 5) изучить документацию и освоить приемы работы с выбранной средой разработки.

После длительного процесса разработки алгоритма и отладки программного обеспечения может оказаться, что имеющимися средствами задачу решить невозможно, и один из предшествующих неправильно сделанных шагов следует повторить.

Комплексное решение задачи создания прототипа системы управления импульсным преобразователем на микроконтроллере может быть выполнено с помощью аппаратных средств отладки программного обеспечения, поддерживающих интерфейс с MATLAB+Simulink. Пакет Target Support дает возможность передавать код, сгенерированный продуктами MathWorks, для выполнения в реальном времени на встраиваемых микропроцессорах, микроконтроллерах и сигнальных микропроцессорах. Использование данного пакета позволяет интегрировать периферийные устройства и операционные системы реального времени с алгоритмами, созданными с помощью Simulink-моделей, диаграмм Stateflow и языкового подмножества встраиваемого MATLAB, не разрабатывая драйверы низкого уровня и программы, работающие в реальном времени. Полученный исполнимый программный модуль может быть запущен на встраиваемых аппаратных средствах с целью быстрого макетирования, анализа производительности в реальном времени, настройки на реальном объекте.

В настоящее время данный пакет поддерживает более 50 популярных семейств процессоров, а также отладочные платы для Blackfin (Analog Devices), MPC5xx (Freescale), C166 (Infineon), C2000/C5000/ C6000 (Texas Instruments).

Начиная с *MATLAB* версии R2011b *Target Support* был встроен в пакет *Embedded Coder*, который генерирует читаемый, компактный и быстрый код на язы-

ках С и С++ для использования во встраиваемых процессорах на целевых макетных платах, а также для микропроцессоров, используемых в массовом производстве.

На Рис. 6 представлен результат разработки прототипа системы управления повышающим КРИП малой мощности с использованием целевой платы eZdsp TMS320F2812 (Spectrum Digital), в которой использован сигнальный процессор фирмы Texas Instruments и которая поддерживается *MATLAB*. Высокая производительность и специальные резидентные аппаратные средства сигнального микроконтроллера открывают возможности реализации продвинутых алгоритмов управления импульсным ключом [6 и 9].

Simulink-модель содержит узлы, позволяющие задать режимы резидентных АЦП и ШИМ и организовать связь с *MATLAB* (блоки *To RTDX* и *From RTDX*). Цифровой регулятор в данном случае реализован в виде *Simulink*-блока *PID Controller*.

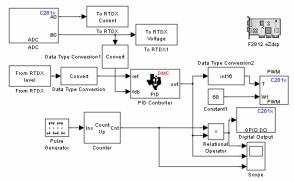


Рис 6

После создания и отладки модели в режиме симуляции производится автоматическая генерация исходного текста программы на языке С средствами *MATLAB* и передача его в интегрированную среду разработки программного обеспечения сигнальных процессоров Code Composer. Далее автоматически запускается пакеттранслирующий ный файл, код MATLAB и загружающий объектный модуль в память программ целевой платы. Последующая работа производится в режиме реального времени.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Для проверки предложенной выше концепции разработки системы управления КРИП на базе сигнального процессора был создан лабораторный макет Рис. 7, с компонентами, аналогичными Рис. 5.

Рис. 7

Программное обеспечение разработано и отлажено в соответствии с описанной выше процедурой, т.е. практически без низкоуровневой работы с текстом автоматически сгенерированной *МАТLAB* программы. Это позволило существенно сократить сроки разработки прототипа, повысить наглядность и оптимизировать систему управления. На Рис. 8 представлены снятые осциллограммы тока ключа и управляющего сигнала.

Рис 8

Экспериментальные данные продемонстрировали очевидную схожесть характера динамических процессов в системе управления, содержащей КРИП и правильность подхода к высокоуровневому программированию сигнального процессора. Кроме того, они позволили уточнить параметры, а также усовершенствовать структуру модели.

ВЫВОДЫ

1. Определены вектора состояния для четырех коммутационных интервалов по-

вышающего КРИП, которые могут быть использованы для реализации эффективного алгоритма управления.

- 2. Построены *Simscape*-модели и сформулирована концепция сквозного высокоуровневого проектирования аппаратных и программных средств системы управления КРИП, позволяющая существенно сократить сроки разработки.
- 3. Экспериментально подтверждена возможность высокоуровневой разработки и отладки прикладного программного обеспечения встраиваемой системы управления КРИП.
- [1] Popovi'c-Gerber J., Oliver J.A., Cordero N., Harder T., Cobos J.A., Hayes M., O'Mathuna S.C., Prem E. Power Electronics Enabling Efficient Energy Usage: Energy Savings Potential and Technological Challenges// IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2338–629, May 2353.
- [2] Ли Ф.К. Высокочастотные квазирезонансные преобразователи// ТИИЭР. 1988.— Т. 76, N94.— С. 83 97.
- [3] Jayashree E., Uma G. Design and implementation of zero-voltage switching quasi-resonant positive-output Luo converter using analog resonant controller UC3861// IET Power Electron., 2011, Vol. 4, Iss. 1, pp. 81–88.
- [4] Ko Y.-P., Y.-S. Lee W.-H. Chao. Analysis, design and implementation of fuzzy logic controlled quasi-resonant zero-current switching switched-capacitor bidirectional converter// IET Power Electron., 2011, Vol. 4, Iss. 6, pp. 683–692.
- [5] Jayashree E., Uma G. Analysis, design and implementation of a quasi-resonant DC–DC converter// IET Power Electron., 2011, Vol. 4, Iss. 7, pp. 785 792.
- [6] Войтенко В.П. Квазиоптимальное регулирование в промышленной системе с импульсным ключом// Технічна електродинаміка, 2011. С. 171 175. (Тем. вип. "Силова електроніка та енергоефективність", ч. 2).
- [7] Войтенко В.П., Денисов Ю.А. Определение векторов состояния в квазирезонансном импульсном преобразователе, переключаемом при нулевом напряжении// Технічна електродинаміка, 2001. С. 23 26. (Тем. вип. "Силова електроніка та енергоефективність", ч. 1).
- [8] Ту Ю. Современная теория управления: Пер. с англ. Я.Н.Гибадулина, под ред. В.В.Солодовникова. М.: Машиностроение, 1971. 472 с.
- [9] Войтенко В.П. Квазиоптимальные промышленные регуляторы с автоматической параметрической идентификацией// Технічна електродинаміка, 2004. С. 85 90. (Тем. вип. "Силова електроніка та енергоефективність", ч. 3).