
Lecture Notes in Networks and Systems 667

Serhiy Shkarlet · Anatoliy Morozov · 
Alexander Palagin · Dmitri Vinnikov · 
Nikolai Stoianov · Mark Zhelezniak · 
Volodymyr Kazymyr   Editors

Mathematical 
Modeling and 
Simulation 
of Systems
Selected Papers of 17th International 
Conference, MODS, November 14–16, 2022, 
Chernihiv, Ukraine



Lecture Notes in Networks and Systems

Volume 667

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

Advisory Editors

Fernando Gomide, Department of Computer Engineering and Automation—DCA,
School of Electrical and Computer Engineering—FEEC, University of
Campinas—UNICAMP, São Paulo, Brazil

Okyay Kaynak, Department of Electrical and Electronic Engineering,
Bogazici University, Istanbul, Türkiye

Derong Liu, Department of Electrical and Computer Engineering, University of
Illinois at Chicago, Chicago, USA

Institute of Automation, Chinese Academy of Sciences, Beijing, China

Witold Pedrycz, Department of Electrical and Computer Engineering, University of
Alberta, Alberta, Canada

Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Marios M. Polycarpou, Department of Electrical and Computer Engineering,
KIOS Research Center for Intelligent Systems and Networks, University of Cyprus,
Nicosia, Cyprus

Imre J. Rudas, Óbuda University, Budapest, Hungary

Jun Wang, Department of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong



The series “Lecture Notes in Networks and Systems” publishes the latest
developments in Networks and Systems—quickly, informally and with high quality.
Original research reported in proceedings and post-proceedings represents the core
of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new
challenges in, Networks and Systems.

The series contains proceedings and edited volumes in systems and networks,
spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor
Networks, Control Systems, Energy Systems, Automotive Systems, Biological
Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems,
Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems,
Robotics, Social Systems, Economic Systems and other. Of particular value to
both the contributors and the readership are the short publication timeframe and
the world-wide distribution and exposure which enable both a wide and rapid
dissemination of research output.

The series covers the theory, applications, and perspectives on the state of the art
and future developments relevant to systems and networks, decisionmaking, control,
complex processes and related areas, as embedded in the fields of interdisciplinary
and applied sciences, engineering, computer science, physics, economics, social, and
life sciences, as well as the paradigms and methodologies behind them.

Indexed by SCOPUS, INSPEC, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

For proposals from Asia please contact Aninda Bose (aninda.bose@springer.com).

mailto:aninda.bose@springer.com


Serhiy Shkarlet · Anatoliy Morozov ·
Alexander Palagin · Dmitri Vinnikov ·
Nikolai Stoianov ·Mark Zhelezniak ·
Volodymyr Kazymyr
Editors

Mathematical Modeling
and Simulation of Systems
Selected Papers of 17th International
Conference, MODS, November 14–16, 2022,
Chernihiv, Ukraine



Editors
Serhiy Shkarlet
The Ministry of Education and Science
Kyiv, Ukraine

Alexander Palagin
Academician of NAS of Ukraine
V.M. Glushkov Institute of Cybernetics
Kyiv, Ukraine

Nikolai Stoianov
Bulgarian Defence Institute
Sofia, Bulgaria

Volodymyr Kazymyr
Chernihiv Polytechnic National University
Chernihiv, Ukraine

Anatoliy Morozov
Academician of NAS of Ukraine
Institute of Mathematical Machines
and Systems Problems
Kyiv, Ukraine

Dmitri Vinnikov
Tallinn University of Technology
Tallinn, Estonia

Mark Zhelezniak
Institute of Environmental Radioactivity
Fukushima University
Fukushima, Japan

ISSN 2367-3370 ISSN 2367-3389 (electronic)
Lecture Notes in Networks and Systems
ISBN 978-3-031-30250-3 ISBN 978-3-031-30251-0 (eBook)
https://doi.org/10.1007/978-3-031-30251-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-30251-0


Preface

The International Conference “Mathematical Modeling and Simulation of Systems”
(MODS) was formed to bring together outstanding researchers and practitioners in
the field of mathematical modeling and simulation from all over the world to share
their experience and expertise.

The conferenceMODSwas established by the Institute ofMathematicalMachines
and Systems Problems of the National Academy of Sciences of Ukraine (NASU) in
2006. MODS is now an annual international conference held by Chernihiv Poly-
technic National University with the assistance of the Ministry of Education and
Science of Ukraine, the NASU, and the State Research Institute for Testing and
Certification of Arms and Military Equipment, universities and research organiza-
tions from UK, Japan, Sweden, Bulgaria, Poland, Estonia, and Ukraine participating
as co-organizers of the conference.

The XVIIth International Conference MODS‘2022 was held in Chernihiv,
Ukraine, duringNovember 14–16, 2022.MODS’2022 received 48paper submissions
from different countries. All papers went through a rigorous peer-review procedure
including pre-review and formal review. Based on the review reports, the Program
Committee finally selected 24 high-quality papers for presentation on MODS’2022,
which are included in “Lecture Notes in Networks and Systems” series.

This book contains papers devoted to relevant topics including tools and methods
of mathematical modeling and simulation in ecology and environment, manufac-
turing and energetics, information technology, modeling, analysis and tools of safety
in distributed information systems,mathematicalmodeling and simulation of special-
purpose equipment samples, and cyber-physical systems. All of these offer us plenty
of valuable information and would be of great benefit to the experience exchange
among scientists in modeling and simulation.

The organizers of MODS’2022 made great efforts to ensure the success of this
conference despite the active military operations on the territory of Ukraine. We
hereby would like to thank all the members of MODS’2022 Advisory Committee
for their guidance and advice, the members of Program Committee and Organizing
Committee, the referees for their effort in reviewing and soliciting the papers, and all
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vi Preface

authors for their contribution to the formation of a common intellectual environment
for solving relevant scientific problems.

Also, we are grateful to Springer-Verlag and JanuszKacprzyk as the editor respon-
sible for the series “Lecture Notes in Networks and Systems” for their great support
in publishing these selected papers.

Serhiy Shkarlet
Alexander Palagin
Anatoliy Morozov
Dmitri Vinnikov
Nikolai Stoianov
Mark Zhelezniak

Volodymyr Kazymyr
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A Conceptual Model for Increasing 
the Speed of Decision-Making Based 
on Images Obtained from UAVs 

Volodymyr Voytenko , Yuriy Denisov , Roman Yershov, 
and Maksym Solodchuk 

Abstract To reduce the load on the operator of an unmanned aerial vehicle (UAV) 
during long search and rescue, and monitoring missions, the concept of an automatic 
system is proposed, which directly on board performs a preliminary analysis of 
images received from a high-resolution navigation video camera, determines areas 
of interest, and sets the position of an additional camera with a reduced viewing angle 
to scale the image of the selected area. This allows the operator to speed up the final 
decision and reduces the response time to the detection, identification of an object, 
as well as to the preparation of a mission report. To develop a technical system that 
will be able to solve the tasks, a complex hierarchical model is considered, consisting 
of three components: a software system for image pre-processing and analysis, an 
electromechanical camera positioning system, and a higher-level human–machine 
complex. It is determined that the model of the first component should be based 
on the use of a deep learning artificial neural network using inference trees. The 
Simulink model of the positioning system contains a controller that improves the 
dynamics of two interconnected electric drives by using three control loops in each 
of them. The features of information perception by the operator of the UAV control 
complex are analysed and the need to consider the effect of global precedence is 
noted. The results of the simulation of the electromechanical link are presented and 
the complexes of further research are outlined. 
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1 Introduction 

To carry out search and rescue, surveillance, intelligence, and reconnaissance 
missions, unmanned aerial vehicles (UAVs) are widely used with sensor units 
installed on board, and which operate in various ranges of electromagnetic (EM) 
waves: from infrared to ultraviolet [1]. For navigational and other purposes, the 
visible EM-range is essential, allowing the UAV operator to rely on a familiar view 
of the terrain and objects located on it. In this case, images are created by one or more 
high-resolution video cameras [2], which can be placed on gyro-stabilized platforms 
[1], and this ensures, in particular, high image quality. 

For processing large areas of the earth’s surface, aircraft-type devices are more 
appropriate, since, unlike various rotor structures, they have a significantly higher 
speed and flight range [3]. The high flight speed of the UAV during the mission 
leads to an increase in the information flow from the screen of the display device, 
causing operator fatigue and even the emergence and development of occupational 
diseases. Reduced attention, in turn, increases the likelihood of mistakes and missed 
targets. Therefore, the task of building a technical system that automatically performs 
preliminary processing of video information and helps to reduce the load on the 
human operator is relevant. 

These video sensor units are often equipped with two high-resolution video 
cameras: the main (navigation) camera with a sufficiently wide viewing angle for 
reliable orientation of the UAV crew in space, and an additional (spot) camera with a 
small viewing angle and an enlarged image that this camera can form [1]. Provided 
that the angle of view of the main video camera remains unchanged, an increase 
in the UAV flight height allows expanding the area of the terrain displayed on the 
monitor screen by reducing the detail, however, using the spot camera, an additional 
enlarged image appears, which makes it easier for the operator to identify the target, 
reducing the time for making a decision on further actions. 

It is essential for modern conditions to implement as many functions as possible, 
performed directly on board the UAV [4], so that the operator has almost the last step: 
considering the hint generated by the technical system, complete the image analysis, 
and perform the prescribed mechanical action. Work on board allows, in particular, 
to perform (or continue to perform) a task autonomously when it is carried out in 
search mode along a given route, which increases stealth and stability when exposed 
to various external factors. 

Saving even one second or a certain fraction of it on this path is a task that requires 
efforts on several levels.



A Conceptual Model for Increasing the Speed of Decision-Making … 303

2 The Structure of the System with Advanced Capabilities 
for Analyzing Images Obtained from UAVs 

Figure 1 shows a UAV flying at a height H with a speed v. The gyro-stabilized 
platform P, on which the camera unit is installed, is directed forward at an angle 
α relative to the normal to the ground surface, which allows the operator to better 
navigate the route. The main (navigation) video camera has a fairly wide angle of 
view β, which determines the size of the terrain area (b is the width, h is the “height”, 
i.e., the size along the direction of the UAV movement), which is converted into an 
image of the format Kf = b:h, defined by the video standard. 

In the context of solving the task of accelerating the decision-making process, the 
UAV operator scales the image of a fragment in which an object of interest may be 
located. This is usually done through the operator’s own actions, which, using the 
appropriate controls, directs the gyro-stabilized platform with the sensor unit installed 
on it. The next action of the operator should be exactly the increase (zooming) of the 
image, remotely implemented using the appropriate electric drive, which increases 
the focal length of the lens, while simultaneously reducing the viewing angle of 
the camera. In this case, as a rule, an autofocusing procedure is additionally carried 
out, for which a separate electric drive with its own electromechanical system and a 
dedicated control algorithm is used. Thus, the operator, having previously assessed 
the image, must perform several successive control actions, accompanied by the 
reaction of electromechanical devices. All this increases the time for obtaining a 
scalable image, which in this case gets to the operator in a single video stream. And 
this, in turn, reduces the amount of information about the flight, which makes it 
difficult to document after the mission is completed. 

To overcome these shortcomings in practice, an additional video camera (spot 
camera) with a small viewing angle, which is located on the same platform as the 
main (navigation) one, next to other necessary sensors, can be used to zoom in on 
the image. Switching the image on the video monitor can again be performed by the 
operator as a result of additional actions. However, since the main and spot cameras 
are located on the same platform, the operator can observe only that fragment of 
the surface, the direction of which coincides with the center of the original image 
(or another predetermined point that was set before the start of the mission). But

Fig. 1 Definition of symbols 

P 
α 

H 

β 

h 
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v 
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since the area of interest can be located in another part of the input image, additional 
positioning of the gyro-stabilized platform will be required, followed by a return to 
the original position to continue navigation. This, again, wastes valuable time and 
additional workload and fatigue for the operator. 

A solution is proposed (Fig. 2), which provides for the placement of a narrow-angle 
spot camera (SC) on its own platform (1), which can move relative to the base gyro-
stabilized (2) along two coordinates. In this case, two video channels actually work 
in parallel and independently of each other, which, even if it is impossible to transmit 
the entire video stream, for example, due to interference, limited bandwidth of the 
video channel, or other reasons, allows you to accumulate an array of information 
from both cameras. This, in particular (but not only), reduces the need for repeat 
missions along the same route, which is the most stressful for the operator. 

To implement the idea, you need to add one more remote-controlled electric drive 
(SCED) of the spot camera (SC) to the existing remote-controlled electric drive 
(MCED) of the main camera (MC). Now the main camera has a fixed angle of 
view β1, and the spot camera has a fixed angle of view β2, and the zoom factor 
(magnification) of the image is 

M = β1/β2. 

The angle β2 can be fixed, or it can change with a discrete step, which will further 
simplify the interaction of two systems in automatic mode. To facilitate the use of 
digital software and hardware, it is advisable to discretize the input image by dividing 
its entire plane into zones – rectangular sections that have the same format as the

SCED 

MCED 

β
2 

β1 
1 

2
SC 

MC 

Fig. 2 Constructive model of interaction between two cameras 
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Fig. 3 Advanced system structure 

input image. Figure 2 shows the division into Nz = 16 zones, providing for the use 
of a spot camera with a viewing angle β2 = β1/16. 

The proposed solution has such disadvantages as increased weight, dimensions, 
and complexity of the entire complex of sensors, since in addition to additional 
mechanical elements, there is also a two-position electric drive of the spot camera. 
However, the use of the varifocal lens of the main camera in the basic version also 
requires two drives (for changing the focal length and for focusing). In addition, such 
a lens itself is more complex, more expensive, less stable, and reliable compared to 
a device with fixed parameters. The additional spot camera platform is simpler than 
the main one (it has fewer degrees of freedom), it is designed for a smaller load, and 
is therefore less inertial. 

Therefore, the proposed structure (Fig. 3) contains: 
CAU – Camera Apparatus Unit; 
VSCU – Video Signal Conversion Unit; 
IASS – Image Pre-processing and Analyzing Software System; 
SCPS – Spot-Camera Positioning System; 
UAVC – UAVs Control Complex. 
This structure uses both the main camera and an additional spot camera with fixed 

focal lengths and focusing, but with different viewing angles β1 and β2. 
CAU forms two separate digital streams – Spot-Camera Image Signal (SCIS) and 

Main Camera Image Signal (MCIS), which arrive at the VSCU, and then through the 
Communication Channel (CC) enter the UAVC. During the mission, CC is a radio 
link with the UAV. When setting up the device on the ground and reading information 
from on-board drives, both wired and wireless technologies can be used. In some 
cases, there may be no CC (execution of an autonomous flight with subsequent access 
of the operator to the information stored on the built-in drive during the mission). 

IASS, based on the images received from the main camera, forms one of the 
possible conclusions about the number of the zone to which the spot camera should
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be positioned. Logical information from this block (Inference) enters the SCPS, 
where electrical signals for positioning the spot camera along the yaw angle Eb and 
pitch angle Eh are generated. 

UAVC is the cutting edge of the human-machine system. Here, telemetry and video 
information are received, visualized, converted, and the response initiated by the oper-
ator is carried out by performing predetermined actions: the use of controls for trans-
mitting commands in the opposite direction (to the UAV), as well as further processing 
of information, documenting the mission, transferring it to other authorities, etc. 

3 Image Pre-processing and Analyzing Software System 

Image pre-processing may be required to correct visibility conditions, angle, elimi-
nate interference, noise, etc. [5]. In remote sensing applications, where the geometric 
parameters of the sensor’s field of view are known (which is a common situation), 
knowing the height of the sensor above the observed surface can be sufficient to 
normalize the image size if the shooting angle is constant. Similarly, rotation normal-
ization requires knowing the angle by which the image (or sample) should be rotated, 
which again requires spatial hint. In this remote sensing problem, information about 
the direction of flight may be sufficient to rotate the resulting images to a standard 
orientation. If additional spatial information is not available, normalizing the size 
and rotation can be a very difficult task. To solve it, it is necessary, using known 
methods, to automatically find features in the image that could be a spatial hint. 

So, general approaches to solving all the necessary problems listed above are 
known and will not be the subject of discussion in this article. The final purpose of 
the analysis within our system is to determine the region of interest and generate 
commands for positioning the spot camera. Initially, we see the primary task of 
pattern detection and classification. 

The question of choosing and using certain methods of image processing requires a 
separate study. However, we can say that today this area is dominated by algorithms 
based on the use of artificial intelligence methods, which are based on machine 
learning of artificial neural networks. The theoretical foundations of machine learning 
have been laid down for a long time, and their classification and application features 
for solving pattern recognition problems are described, in particular, in [6]. 

If the data is not big data (which could have been solved by simple technology 
and tools), then the machine-learning techniques like the supervised learning and the 
dimensionality reduction techniques are useful [7]. 

A real breakthrough in the field of pattern recognition and computer vision was the 
development of a convolutional neural network AlexNet [8, 9]. AlexNet implemen-
tation is easier after the releasing of so many deep learning libraries like PyTorch, 
TensorFlow, Keras [10]. 

When designing our system, one of the main requirements formulated earlier 
should be kept in mind: most functions must be performed directly on board the 
UAV. After all, this not only improves the dynamic performance of the man-machine
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system, but also allows you to perform parts of the mission offline, accumulating 
information directly on the UAV, which is very important in some cases. However, it 
should be noted that most embedded systems are based on the use of microcontrollers 
that are not very high performance. In some cases, this is due not so much to economic 
considerations as to purely constructive and energy constraints. To an even greater 
extent, this applies to UAVs, where the requirements for weight and size indicators 
of any onboard equipment are much more stringent than for ground vehicles. 

The issues of solving the problem of applying algorithms based on the use of 
artificial neural networks of deep learning in the conditions of constructive limitations 
by means of embedded systems have recently received more and more attention 
[11, 12]. 

An accent on hardware electronics, processor architecture, and connections to 
memory is done in [12]. This shows us that the results are obtained with greater 
reliability due to the achievements of modern electronic technologies, the structure 
of the ANN and in combination with more advanced software methods. 

In [13], we can see an attempt to use the concept of CNN-based inference for 
IoT edge clusters. As you know, IoT is a device with a hard resource limit, and 
often it is stronger than that of UAVs. Here authors offer DeepThings, a special 
framework for the adaptive-distributed launch of CNN. To minimize the required 
memory, DeepThings uses a special scalable partitioning of convolutional layers 
while maintaining parallelism. Perhaps this approach will be useful when organizing 
a “multi-drone” mission in the future, but not in our case. 

Deep Neural Networks (DNNs) are now a mainstream machine learning tech-
nology. However, running DNNs on resource-constrained devices is not trivial, as it 
requires high performance and energy costs. Deploying a DNN to run in the cloud 
or splitting a DNN with adaptive distribution of computing between the device and 
the edge to use hybrid computing resources nearby to determine the DNN in real 
time [14] during the performing of the above missions is impossible even in terms 
of the limitations of the UAV radio link itself. So, we need to find a more standalone 
embedded solution. 

Advancements in compression of neural networks and neural network archi-
tectures, coupled with an optimized instruction set architecture, could make 
microcontroller-grade processors suitable for specific low-intensity deep learning 
applications [15]. There, a simple extension of the instruction set was proposed with 
two main components – hardware loops and dot product instructions. 

The influence of the depth of a convolutional network on its accuracy in the large-
scale image recognition setting was studied in [16]. Careful evaluation of increasing 
depth networks using an architecture with very small (3 × 3) convolution filters has 
shown that a significant improvement over previous configurations can be achieved 
by increasing the depth to 16–19 weight layers. These conclusions formed the basis 
of successes in the localization and classification tracks. It is also shown that the 
authors’ representations generalize well to other datasets, where they achieve state-
of-the-art results. The two most powerful ConvNet models are now publicly available 
to facilitate further research into the use of deep visual representations in computer 
vision.
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Two efficient approximations to standard convolutional neural networks were 
proposed in [17]. In one case, the filters are approximated by binary values, which 
reduces the required memory by a factor of 32. In another case, the input to the 
convolutional layers is also binary. The use of mainly binary operations allows not 
only saving memory, but also significantly speeding up convolutions. The proposed 
method in real time allows you to run convolutional networks on processors (not only 
on graphics). As a result, such networks can solve complex visual problems with 
simple and energy-efficient devices placed on UAVs. This approach was evaluated 
in the ImageNet classification problem, where it showed almost the same accuracy 
as a comparable version of the AlexNet network. The authors claim that comparing 
the proposed Binary-Weight-Networks and XNOR-Networks with other binarized 
networks such as BinaryConnect and BinaryNets also shows better accuracy results. 

Before we move on to practical machine learning, we need to touch on one aspect 
regarding the data set we need in “aerial vision” as a new frontier of computer vision 
[18]. It is noted that the existing UAV data sets are mainly focused on object detection, 
and not on recognition. These datasets can be used in our case because we assume 
that more reliable recognition can currently be performed by a human. 

DeepCluster [19] may turn out to be a very promising solution in the context 
of the formulated tasks. This clustering method iteratively groups features using a 
standard clustering algorithm (K-means method) and uses subsequent assignments as 
a supervision to update neural network weights. What can be extremely important is 
the potential effectiveness of this model for learning deep representations in specific 
domains when no labeled dataset is available. In this case, a detailed description of 
the input data and domain-specific knowledge is not required. 

Considering the very good results of object detection in images obtained by DNN 
AlexNet [8], we will choose it as the basis for building our future classifier. The results 
obtained can be further used as a benchmark for comparison with other developed 
network architectures. The essential differences of our case from traditional problems 
are that the number of classes can be much less than in the standard problem of pattern 
recognition. The concept of a class itself has a different meaning than usual: it is just 
a number – the number of a rectangular area of the image where the probability of 
the presence of an object of interest exceeds a certain specified value. This opens 
up the possibility of detecting an object of interest directly on board the UAV with 
relatively low-performance microcontrollers. 

Suppose the main camera’s view angle is β = 23°. Moreover, if the UAV is at a 
height of H = 100 m, the height of the image on the surface is h = 20 m (Fig. 1). At 
a speed v = 72 km/ h, the UAV travels a distance s = 20 m, i.e., the image frame is 
updated by 100% at Tr = 1 s.  

Today, the most popular image format formed by video cameras installed on UAVs 
is HD nxx ny = 1920 × 1080 (Kf = 16:9). This implies the size of one pixel for H 
= 100 m, β = 23°:

� = h/ny = 2000/1080 ≈ 1, 85cm.
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Table 1 The number and format of split zones of the input image 

N1 1 2 3 4 5 6 8 10 12 15 

Nz 1 4 9 16 25 36 64 100 144 225 

Nh 1920 960 640 480 384 320 240 192 160 128 

Nv 1080 540 360 270 216 180 135 108 90 72 

h, m 35,5 17,8 11,8 8,9 7,1 5,9 4,4 3,6 3 2,4 

b, m 20 10 6,7 5 4 3,3 2,5 2 1,7 1,3 

Here nx, ny are the number of pixels along the horizontal and vertical lines, 
respectively. 

Table 1 shows the quantitative parameters of image zoning of the main UAV video 
camera operating in HD format. 

The following designations are used in the table: 
N1 – number of image zones along one of the axes; 
Nz – total number of image zones; 
Nh – the number of pixels in one zone of the image horizontally; 
Nv – the number of pixels in one zone of the image vertically; 
h, b – the size of the zone on the ground at a flight altitude H = 100 m, the angle 

of view of the main camera β = 23°. 
Compared to the standard parameters of the AlexNet network [8], where the 

input image format is 224 × 224, and the number of outputs is 1000, the resource 
requirements in our network are less, which increases the possibility of its successful 
deployment on board the UAV using the appropriate element base. 

In the case of the parallel mode of detection of the zone of interest, each zone can 
be processed independently from one another, and the result will be formed at the 
same time. However, taking into account the time interval for updating the image 
frame of the main camera, it is also possible to perform zoning in sequential mode. In 
both modes, of course, we are talking about the work of pre-trained neural networks, 
but not about their training, the execution time of which can be significantly longer 
than the longest mission. 

4 Spot-Camera Positioning System 

Figure 4 shows a structural model of the system designed to position the spot camera 
to the zone determined at the previous stage using the Image Pre-processing and 
Analyzing Software System.

The model contains two electric positioning drives: 
SCVD – Spot-Camera Vertical Drive; 
SCHD – Spot-Camera Horizontal Drive.
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Fig. 4 Constructive model 
of the spot camera 
positioning system
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Fig. 5 Key components of one of the electric actuators for positioning a spot camera with 
mechanical links 

To solve the tasks which are set, it is advisable to use rotating brushless electric 
motors as part of these electric drives. Figure 5 shows the key components of one of 
the spot camera positioning motors with mechanical links affecting the actuators. 

The reference voltage u controls the motor current im, which is generated by the 
power converter PC and flows through the motor windings EM. The motor generates 
a torque that accelerates the rotational inertia MI and counteracts the friction. The 
encoder EN measures the speed and rotation angle. The inertia of load is modeled 
using the LI block. 

The power converter in the first approximation provides current 

im = K pcu, 

which is linearly related to the applied control voltage u. Here  Kpc is the conductivity 
of the converter. The torque generated by the motor is proportional to the current 

Tm = Kmim, 

where Km is the motor torque constant. The torque generated by the motor overcomes 
the rotational inertia of the motor Jm, and the rotating part is accelerated to the 
rotational speed ω. Friction effects are modeled by the coefficient Bm, and the friction 
moment itself is proportional to the rotation speed and is approximately Bm ωm.
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The current is controlled by an electronic AC voltage source with feedback on 
the actual motor current. The AC voltage source is implemented using a pulse-width 
modulated (PWM) pulse converter. When designing the voltage control system on 
the windings, we will take into account the electrical dynamics of the motor, due to 
its resistance and inductance, as well as the back EMF. 

Spot camera positioning motors do not exist in separate but are connected to 
mechanical links. These links have two significant effects on the engine: they give 
additional inertia, and also create torque because of the imperfect balancing of the 
elements of the spot camera gimbal suspension. Both additional actions can vary 
depending on the rotation angles. In Fig. 5, the connected mechanical links are 
modeled using the LI block, however, at this stage, we will assume that the suspension 
of the spot camera is perfectly balanced, and the load inertia is a constant value. 

We write the torque balance on the motor shaft as 

Km K pcu − Bω − τc(ω) = J ω̇, (1) 

where B, τc and J are the effective total viscous friction, Coulomb friction, and inertia 
due to the motor, bearings, and load: 

B = Bm + Bl , τc = τc,m + τc,l . (2) 

To analyze the dynamics (1), we neglect the nonlinearities 

J ω̇ + Bω = Km Kau, 

and then apply the Laplace transform: 

s J�(s) + B�(s) = Km KaU (s), 

where Ω(s) and U(s) are the Laplace transform of the signals in the time domain 
ω(t) and u(t), respectively. The last expression can be turned into a linear transfer 
function

�(s) 
U (s) 

= 
Km Ka 

J s  + B 

of motor speed relative to the input control signal, having one (mechanical) pole. 
Once we have the model in the form above, we can create a step response graph 

and use standard control system design tools. 
To ensure good dynamic and static characteristics in both drives, we use three-loop 

automatic control systems, including [20]: 

– internal current loop; 
– speed loop; 
– outer angle loop.
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Fig. 6 The transient processes in the vertical angle positioning loop 

Figure 6 shows the result of modeling of the speed loop and angle positioning of 
the spot camera along the direction of the UAV movement for various references. 

It should be noted that the specifics of the UAV (limited energy resources and 
time) require the use of more advanced control algorithms than those used in this 
simplified model. These can be optimal (or quasi-optimal) controllers, in which it 
is possible to provide a transient process in a minimum time, without overshoot 
and with given energy costs [21]. An important issue is also taking into account the 
dynamics of the power converter. 

The difference between the two electric drives (Fig. 4) is, first of all, that the posi-
tioning subsystem along the pitch angle is more powerful, since it contains, among 
other things, the positioning subsystem along the yaw axis together with the corre-
sponding electric motor and power converter as a load. The less powerful yaw angle 
positioning subsystem is actually loaded only on the spot camera, which allows using 
lighter and more compact electromechanical components in it and obtaining better 
dynamic characteristics. At the final stage of system development, the parameters of 
the corresponding electric motors and power converters need to be clarified. 

Additional analysis will require consideration of the features of two-coordinate 
positioning, considering the specifics of the gimbal on which the spot camera is 
located [3]. 

5 Human-Machine UAVs Control Complex 

Within the framework of this part of the multidisciplinary study, we will limit 
ourselves to issues related to interaction with images from two cameras. From this 
point of view, the first question is to find out what exactly takes more time and strains 
the operator in the first place? What are the main features of a person’s perception 
of information from a monitor screen that can affect the success and timeliness of a 
long-term mission with the participation of a UAV?
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In [22], the idea is put forward, discussed, and tested that the global structuring 
of the visual scene precedes the analysis of local features. It has been experimentally 
established that global signals, which contradict local ones, inhibited reactions at the 
local level. It turned out that global differences were detected more often than local 
ones. It is proposed in [22] that perception proceeds from global analysis to more and 
more fine-grained analysis. The global precedence has several possible advantages 
such as utilization of low-resolution information, economy of processing resources, 
and disambiguation of indistinct details. Although evidence from the psychological 
literature (see references in [22]) supports the notion that global features are extracted 
earlier and/or better than local ones, in most previous research little attention has been 
given to the control over the complexity of global and local features. 

So, we must have in mind that global processing is a necessary stage of perception. 
It turned out that global differences were detected more often than local ones. This 
may be interpreted as a support to the idea that global processing is done before more 
local analysis is completed. 

By shifting this stage to a software system for analysing images from the main 
camera, we connect a person when he is aware of his abilities without fail to start 
with a global analysis, but for a scaled scene and more accurately identify an object 
of interest. Moreover, further reluctance of a person to study local elements promises 
additional bonuses in the context of the task of reducing reaction time and reducing 
operator fatigue. 

The same “global precedence” effect was confirmed in [23] in contrast exper-
iments with animals. Humans responded faster to global than to local targets, 
with human reaction time is independent of display size for both local and global 
processing. Finally, variations in stimulus density did not affect global search slopes 
in humans. Overall, results suggest that perceptual grouping of operations involved 
in the processing of hierarchical stimuli does not require human attention. 

Human-machine interface (HMI) research related to the use of UAVs [24] high-
lights the extreme requirements in terms of operator workload. Real-time simulation 
of a system with a human in the control loop shows the directions for HMI cogni-
tive optimization and equipping UAVs with appropriate levels of autonomy and 
intelligence. 

So, when working on a system for determining the positioning zone of a spot 
camera, it is advisable to take into account a number of recommendations related to 
improving human performance and maintaining good awareness of the situation. This 
concerns the use of appropriate visual cues such as spatial arrangement, clustering, 
icon design, and category design to help the operator recognize information and 
events. Since our task so far is not to develop the HMI itself, but only to clarify the 
needs, capabilities and impact on the Image Pre-processing and Analyzing Software 
System, let us pay attention to the following. 

UAV status not related to the current mission should be hidden unless requested 
by the operator or required for a critical decision. 

The visual search models suggest that, in a fast parallel search, information about 
the location of a target’s visual template among distractions and identification of
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information are not available simultaneously. That is, the location of the target is 
recognized at earlier stages of visual processing than target identification [22]. 

The results of [25] showed that the search time does not increase with an increase 
in the number of distractors at both scales (local/global). However, target detection 
on a local scale required significantly more time than on a global scale. This latter 
finding agrees with the phenomenon of ‘global precedence’ [22]. 

Therefore, the global precedence (human) model can be used to refine the IASS 
(machine learning) decision making process. 

It should also be noted that the specifics of the automotive industry focus mainly on 
how to create a secure interaction with technology that will help the driver complete 
the driving task, as well as give the driver more time to perform other tasks that are 
not related to driving [26]. However, this formulation of the problem and some other 
general approaches intensively developed for automobiles are fully consistent with 
the needs and can be useful for UAVs as well. 

6 Conclusion 

To reduce the load on the operator of an unmanned aerial vehicle (UAV) during long 
search and rescue and monitoring missions, the concept of an automatic system is 
proposed, which directly on board performs a preliminary analysis of images received 
from a high-resolution navigation video camera, determines areas of interest, and sets 
the positioning of an additional camera with a reduced viewing angle to scale the 
image of the selected area. This allows the operator to speed up the final decision 
and reduces the response time to the detection, identification of an object, as well 
as to the preparation of a mission report. To develop a technical system that will 
be able to solve the tasks, a complex hierarchical model is considered, consisting 
of three components: a software system for image pre-processing and analysis, an 
electromechanical camera positioning system, and a higher-level human-machine 
complex. It is determined that the model of the first component should be based on 
the use of a deep learning artificial neural network using inference trees, the number 
of inferences of which is equal to the number of zones into which the image of the 
main video camera is divided. The Simulink model of the positioning system contains 
a controller that improves the dynamics of two interconnected electric drives by using 
three control loops in each of them. The reference signal for the external loops is the 
rotation angles of the additional video camera in one of two directions, determined by 
the software pre-processing and image analysis system. Signals of the desired camera 
rotation speeds are formed at the outputs of the external loops. These signals are used 
to form a reference for the internal current loops of both motors’ windings, which 
provide the required torques of the rotors. The features of information perception by 
the operator of the UAV control complex were analysed and the main requirements 
for the construction of a human-machine interface were determined, considering the 
effect of global precedence. The results of the simulation of the electromechanical 
link were presented and the complexes of further research were outlined.
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